一种基于引导策略的自适应粒子群算法
姜凤利 张宇 王永刚
(沈阳农业大学信息与电气工程学院,沈阳 110866)
摘要:为解决粒子群算法前期搜索“盲目”,后期搜索速度慢且易陷入局部极值的问题,对算法中粒子更新方式和惯性权重进行了改进,提出了一种基于引导策略的自适应粒子群算法。该算法在种群中引入4种粒子,即主体粒子、双中心粒子、协同粒子和混沌粒子对粒子位置更新进行引导,克服算法的随机性,从而提高搜索效率;为进一步克服粒子群优化算法进化后期易陷入早熟收敛的缺点,引入聚焦距离变化率的概念,通过聚焦距离变化率的大小动态调整惯性权重,以提高算法的收敛速度和精度,两者结合极大地提高了搜索到全局最优解的有效性。对4个标准测试函数进行仿真,实验结果表明IPSO算法在收敛速度、收敛精度以及成功率上都明显优于LDWPSO和WPSO算法。
关键词:粒子群算法;惯性权重;混合粒子













